Chimer Automated Chimerism Analysis Software

Frequently Asked Questions (FAQ)

Question:	Slide(s)
What is a Chimertyping Panel?	2-4
How many recipients can be analyzed at a time?	5
How do I add samples to an existing project?	6
How do I calibrate my panel?	7-15
Why are informative loci being ignored?	
Why aren't some peaks being called?	25-33
What is Deconvolution?	

(1) What is a CHM Panel? - The CHM panel, short for "Chimertyping Panel", is a project specific panel created during data processing. The CHM panel is required for chimerism analysis.

Data Process - Chimerism Analys Set data process options	SiS	Give the Chimertyping Panel a name using the field below:
Raw Data Analysis Image Auto Range (frame) Start: Image Start:	Allele Call Auto Range (bps) Start: 60 Peak Detection Threshold: Min Intensity: 50 Percentage > 25 Global Max Please Enter Grouping File Path 🔊 Image: Customize Marker Parameters Image: Customize Marker Parameters	Chimerism Sample Identification CHM Panel Name: Fixed Bin Width: 0.5 No. Type Sample Name 1 R Recipient 2 D1 Donor 3 Sample1 4 Sample2 5 Sample3 6 Sample4 7 Sample5
o create a CHM panel (and perform himerism analysis), select these two o	options. <u>N</u> ext >> <u>Cancel</u>	

The Chimertyping Panel is derived from the Genotyping Panel. Only bins shared by either the donor or recipient are saved, the others are discarded.

The Chimertyping panel can be viewed in the panel editor (Tools > Panel Editor). The Chimertyping panel for your current project will be listed under "Project Panel".

(2) How many recipients can I analyze at a time? – One. Because the

Chimertyping panel is *project specific*, only one donor/recipient group may be analyzed at a time. This includes the pre-transplant donor and recipient files, and any number of

post transplant (mixture) samples.

You may also include positive controls, negative controls, and ladder samples.

(3) How do I add samples to an existing project? – Simply open the project (file > open project) and click Project > Add Samples to Project.

Click Add, and then navigate to the sample(s) that you would like to add.

After clicking OK, the program will analyze the new samples using the analysis parameters saved in your project.

	Open Data Files	×
	C:\\CM-Single Donor\PP16 Data\Rename\Bob.Smith_Post_6.SG1	Add
.SG1 100		Add Folder <u>Default</u>
	Channels OK	Cancel

(4) How do I calibrate my panel? – Sometimes, particularly after running a new chemistry or maintaining your CE instrument, you may notice some amount of misalignment between your genotyping panel and your CE files.

This can be an issue because when processing data, peaks may not "fall" into their correct bins, or they may be missed entirely.

However, ChimerMarker provides a series of easy steps that allow the user to automatically calibrate their genotyping panel using an Allelic Ladder sample.

Begin by reprocessing your samples. This time, in the second page of the Run Wizard, **deselect** "Only Call Alleles Present in CHM Panel" and "Auto Create CHM Panel".

Run Wizard	
Data Process - Chimerism Analys Set data process options	sis
Raw Data Analysis ✓ Auto Range (frame) Start: Image: End: ✓ Smooth End: Peak Saturation Enhanced Smooth Peak Saturation Faseline Subtraction ✓ Pull-up Correction Spike Removal Size Call Leave these options unselected. Load Default Save Derault	Allele Call Allele Call Allele Call Auto Range (bps) Start: 60 Constrained for the formula fo
	<< <u>B</u> ack <u>N</u> ext >> <u>C</u> ancel

In the last page of the Run Wizard, select "Auto Select Best Ladder" and "Auto Panel Adjustment".

Run Wizard		
Data F	Run Wizard	
Raw Dat	Additional Settings - Chimerism Analysis Set additional options	
I Auto Stari I Smo □ Pea	Allelic Ladder: NONE	 Auto Select Best Ladder Auto Panel Adjustment
🔽 Pull-		Select these options.
Size Call		
	<< <u>B</u> ack	<u>D</u> k <u>C</u> ancel

The panel editor contains all of the panel files saved in ChimerMarker. In the file tree to the left, you should see a section called **Project Panels** – these are the panels used to process your current project.

You should see two or more project panels – the original panel you used to genotype your samples, and another panel, appended with your ladder name.

This second panel is the calibrated panel. To save it, select it and Navigate to File > Save as New Panel.

To reprocess your samples with this new calibrated ladder, simply reopen the Run Wizard (project > run) and be sure to select your new calibrated panel from the panel dropdown menu.

Run Wizard	
Template Selection Set the template of the project	
 Select an existing template or create one PowerPlex_16_ILS500 PowerPlex_16_ILS600 PowerPlex_18D PowerPlex_21 PowerPlex_ESI_17 PowerPlex_Fusion 	Template Name: PowerPlex_21 Panel: PowerPlex_21_Calibrated UBC Calibrated Size Standard: ILS500 Standard Color: Orange Analysis Type: Chimerism
,⊂ Use last template	🔚 Save 🗙 Delete
	<< Back <u>N</u> ext >> <u>C</u> ancel

In the second page of the Run Wizard, select "Only Call Alleles Present in CHM Panel" and "Auto Create CHM Panel" to perform chimerism analysis.

Run Wizard		×
Data Process - Chimerism Analy Set data process options	sis	
Raw Data Analysis ✓ Auto Range (frame) Start: ① ✓ Smooth End: ✓ Smooth Enhanced Smooth Peak Saturation ✓ Baseline Subtraction ✓ Pull-up Correction ✓ Spike Removal Size Call ✓ Local Southern ✓ Local Southern ✓ Cubic Spline	Allele Call Auto Range (bps) Start: 60 Peak Detection Threshold: ? Min Intensity: 50 Max Intensity: Percentage > 25 Global Max Please Enter Grouping File Path > Image: Only Call Alleles Present in CHM Panel > Auto Create CHM Panel Customize Marker Parameters >	Chimerism Sample Identification CHM Panel Name: Chimer_PowerPlex. Fixed Bin Width: 0.5 No. Type Sample Name 1 AllelicLadder 2 R Recipient 3 D1 Donor 4 Post1 Image: Chimer_PowerPlex.
	<< <u>B</u> ack <u><u>N</u>ext >> <u>C</u>ancel</u>	

In the final page of the Run Wizard, do not select either "Auto Select Best Ladder" or "Auto Panel Adjustment", as we have already done this.

(Run Wizard	×
	Additional Settings - Chimerism Analysis Set additional options	
	Allelic Ladder: NONE Positive Control Template: NONE Allele E valuation Auto Select Best Ladder Peak Score: Auto Panel Adjustment	
With a calik peak calling calibrating chemistry, (orated panel, you should see improved g and more accurate results. Re- is recommended after analyzing a new or after maintenance has been	

performed on your Genetic analyzer.

(5) Why are some informative loci being ignored? Sometimes, markers that appear informative may be ignored. This is usually related the settings that were chosen in the Chimerism Settings window. An example is shown below:

Single-Donor Chimerism	Analysis					
	•• 🖾 🖌 📲 🛃	le l				👔 Help
No FileName	Marker Name	%D CHM	LE	ME	Ignored	〗 <mark></mark>
🖹 1 R: Recipient.SG1	D3S1358	73.62%	3.10%	7.09%	No	
🖹 2 D1: Donor.SG1	TH01	NI	NI	NI	Yes(Auto)	
3 Mix:Sample1.SG1	D21S11	81.48%	7.25%	1.96%	No	Sample4.SG1 ×
A Mix Sample 2 SG1	D18S51	74.62%	1.78%	3.54%	No	D8S1179
E MixCample2.501	Penta_E	76.02%	0.07%	21.12%	No	200 210 220 230 240 250
	D5S818	74.31%	2.19%	NAN	No	
V 🗄 6 Mix:Sample4.SG1	D135317	77.53%	2.05%	0.93%	No	1,800
🗎 7 Mix:Sample5.SG1	D75820	75.74%	1.01%	12.45%	No	
	D165539	71.89%	0.37%	3.38%	NO No	1,600 -
	Banta D	01.40% 7E.0C%	13.10%	14.73% MAN	No	DIR
		70.36%	7.25%	NAN	No	
	AMEL AMA	75 55%	0.56%	NAN	No	1,400 -
	D8S1179	NI	NI NI	NI	Yes[Auto]	
	TPOX	82.79%	8.97%	NAN	No	1.200 -
	FGA	80.15%	5.50%	6.91%	No	
		%D CHM				1,000 -
	Average Chimerism:	75.97%				
	Coefficient of Variation:	6.98%				800
	St. Dev:	5.30				
	MOE:	2.51(90%)				
	Number of Informative Loci:	14				600 -
						R
						400
						400 -
		Many	grour		uld con	nsider this an
		ivially a	Siour	5 000		
		inform	ative	peak	arrang	gement, but the light of the li
				pean		
		progra	m ha	s auto	omatica	ally ignored it.
	_					
						-200-1
	<u> </u>					11 13 15

The "Ignore Shared Allele Imbalance" filter will ignore any locus in which a single source peak has greater RFU than a shared peak. Thus the marker pictured below was ignored.

Here is another marker that is being ignored for no obvious reason:

You can navigate back to the main analysis screen to look at this marker in more detail, or while in the chimerism analysis screen, you can use the "Multi Sample View" icon.

Donor.SG1

3,000

120

×

180

vWA

160

140

D1

With all three traces displayed, the issue becomes more clear: the donor sample has three peaks!

ChimerMarker cannot use this marker because it is expecting only one or two peaks from the donor (and recipient).

It may be tempting to simply delete this peak in the main analysis window. However this will not solve the problem.

The main issue is that the program has created a Donor bin at the site of this peak. Even if we delete the peak, the bin will remain. Thus, you must delete the peak from the panel.

Note that the program has not only called a third donor peak (17), but it has also added a donor bin at this location. This is because the CHM panel is created based on donor and recipient allele calls. The Chimertyping panel can be viewed in the panel editor (Tools > Panel Editor). The Chimertyping panel for your current project will be listed under "Project Panel".

Simply right-click on the extra bin, and select Delete Allele. Save the changes by clicking the save icon

After deleting the peak, saving the changes, and exiting the panel editor, the results will be immediately updated. Now the marker is no longer ignored by the program:

📕 Single-Donor Chimerisn	n Analysis											×
<u>F</u> ile <u>T</u> ool												
	🍋 🚞 🏾	II V) 🗃 🕺	I	- 100						👔 🖁	<u>lelp</u>
Marker Name	%D CHM	LE	ME	Ignored	(€્ ⊖્	🏷 🔯		-			
D3S1358	31.37%	3.26%	13.58%	No	4			,				E F
TH01	NI	NI	NI	Yes(Auto)								<u> </u>
D21S11	31.01%	2.08%	7.12%	No	Donor.SG	1						×
D18S51	25.92%	14.67%	2.35%	No					vWA			
Penta_E	28.89%	4.90%	23.73%	No		120	130	140	150	160	170	
D5S818	29.83%	1.82%	NAN	No	1			D1		<u> </u>		
D13S317	24.57%	19.11%	6.68%	No						D1R		
D7S820	37.68%	24.03%	16.72%	No	2,000 -			A	À			
D16S539	32.37%	6.54%	11.77%	No				- 71	/	}		
CSF1P0	26.43%	12.99%	5.48%	No	0-1				~	<u> </u>		
Penta_D	26.23%	13.65%	NAN	No				14	18	1		_
AMEL	34.09%	12.20%	NAN	No	Desisiont	001		14	10	<u> </u>		
WA .	43.12%	41.92%	NAN	No	Recipient.	501 <u>–</u>						
D8S1179	26.73%	12.01%	8.73%	No					vWA			
TPOX	34.07%	12.13%	NAN	No		120	130	140	150	160	170	
FGA	23.39%	23.01%	4.06%	No	4,000 -	i				D1R		
	VD CUM								ĥ			
Auerage Chimeriany	20 20%				2,000 -				1	}		
Coefficient of Variation:	17 50%								/	{		
St. Devr.	5.24				0-				$\sim \sim \sim$	<u> </u>		
	2.34								18	3		
Number of Informative Loci:	2.43(30%)				Sample2.9	G1						×
Number of miomative Loci.	15								MAA			
						120	420	440	450	400	470	
			_		<u> </u>	120	130	140	150	160	1/0	
To preve	nt this fi	rom ha	appeni	ng in the	2,000-				7	DIR		
future, consider increasing analysis					1.000			Dt	1	1		
					1,000-				1	ļ		
uneshold	us to ill	er out	SIIIdll	реакз.	0-	· ·			$\sim \sim \sim$	<u> </u>		
								14	18	3		

Here is a third common example of a marker being ignored. In this case, the only alleles that were called were 15 and 17.

Single-Donor Chimerisn	n Analysis					3
	🐿 🚞 🖉		1	N ≣	😵 <u>Hel</u>	p
Marker Name D3S1358 TH01 D21S11 D18551 Penta_E D5S818 D13S317 D7S820 D16S539 CSF1P0 Penta_D AMEL vWA D8S1179 TPOY	%D CHM 100.00% NI 100.00% NI 100.00% NI 100.00% 93.94% 100.00% 93.94% 100.00% 95.79% NI 100.00%	LE 1.04% NI 1.04% NI 1.04% 1.04% 1.04% 1.04% 3.22% NI 1.04% NI	ME NAN NI 19.88% NAN NAN 2.17% NAN 7.99% 12.56% NAN NI 3.44%	Ignored No Yes(Auto) No Yes(Auto) No No No No No No No Yes(Auto) No Yes(Auto)	Image: Constraint of the second se	• ×
FGA Average Chimerism: Coefficient of Variation: St. Dev: MOE: Number of Informative Loci:	NI %D CHM 98.97% 2.23% 2.21 1.28(90%) 10	NI	NI	Yes(Auto)	800 600 400 200 0 -200 15 17	-

Our first impulse may be to blame the shared allele imbalance filter discussed on slide 17. However, even with this option deactivated, the marker will still be ignored.

In this special case, only two alleles were called. Thus, when the program attempts to deconvolute the shared peak, it can only use the height of D1 as a reference.

However, D1 is taller than D1R! Because of this, the deconvolution results in a negative number – and the calculation fails.

The result is that markers with peak orientations specifically like that shown cannot be used by the program.

(6) Why aren't some peaks being called? - Occasionally you may notice that certain peaks, or even entire markers aren't being called by the program:

Most commonly, this is because your panel needs to be **Calibrated**. Please see the section titled "How do I calibrate my panel" (slides 7-15) for more information.

If you have confirmed that your panel *is* calibrated and peaks are still being missed, it could be that your analysis filters are set too high.

For example, the two right-most peaks below aren't being called, despite the obvious presence of allele bins directly underneath them:

Thus, it is likely our analysis settings that are filtering them out. These peaks are within a marker – D21S11 – therefore we must check the marker specific settings for D21S11. These can be found in the panel editor (Tools > Panel Editor).

Click on your panel from the file tree to the left. Right click on a marker label (grey rectangle) and select **Edit Marker** to open the marker specific settings.

Here we can see the marker-specific settings for D21S11. In this case, the Min Heterozygote intensity is set to 350 RFU, which is well above the two smaller peaks.

Edit Marker					X
Marker Param	eters	D21511			
Nucleotide F	o. Jepeats (x):	4		•	
Boundary:		195.5	То	260.4	
Min Homoz	ygote Inten	sity:	350	•	
< = Inc	conclusive	<=	400	•	
Min Hetero:	zygote Inter	nsity:	350	•	
< = Inc	conclusive	<=	400	<u>·</u>	
Max Hetero	zygote Imb	alance:	60	%	
Min Hetero:	zygote Imba	alance:	20	%	
Apply H	omo/Heter	o Settings	to All M	arkers	_
Stutter Filter	r: N	- x	22	%	
	N	- 2ж	1	%	
	N	+ x	1	%	
Apply S	tutter Settin	igs to All M	larkers		
		ОК		Cance	el

After lowering the threshold to 200 and saving the results, we can see that the peaks are now called, as excepted.

Edi	t Marker				×
	Marker Parameters				
	Marker Name:	D21S11			
	Nucleotide Repeats (x):	4		•	
	Boundary:	195.5	То	260.4	
	Min Homozygote Intensity: < = Inconclusive <= Min Heterozygote Intensity: < = Inconclusive <=		350	•	
			400	•	
			200	•	
			400	•	
	Max Heterozygote Imba	alance:	60	%	
	Min Heterozygote Imba	lance:	20	%	
	Apply Homo/Hetero	Settings	to All N	larkers	
Use	Use the "Apply to All" box to apply the			%	
box				%	
changes to all markers.		ers.	1	%	
	Apply Stutter Settings to All Markers				
		OK		Canc	el

Note however that these peaks are flagged yellow. This is because despite being above the Min Heterozygote Intensity, the peaks are still below the upper range of 400 RFU, and are therefore still in the inconclusive range.

Why aren't some peaks being called? - Part 6

Here is a second example. Why isn't the small peak in Sample2 being called?

We can clearly see a recipient bin directly under the peak.

Again, we should check the marker-specific panel settings for this locus.

In this case, we can see that the peak is above the 50 RFU threshold of the Min Heterozygote Intensity filter. However, we may observe that this recipient peak is

Edi	t Marker				X
	Marker Parameters				_
	Marker Name:	D2S441			
	Nucleotide Repeats	(x): 4		•	
	Boundary:	208.2	To	246.0	
	Min Homozygote Ir	tensity:	50	•	
	< = Inconclusive <=		200	•	
	Min Heterozygote I	Min Heterozygote Intensity:		•	
	< = Inconclusive <=		100	•	
	Max Heterozygote Imbalance:		60	%	
	Min Heterozygote Imbalance:		40	%	
	Apply Homo/Hetero Settings to All Markers				
	Stutter Filter:	N - x	9	%	
		N - 2x	1	%	
		N + x	1	%	
Apply Stutter Settings to All Markers					
		OK		Cano	el

significantly shorter than the other recipient peak.

Here, it is the Min Heterozygote Imbalance filter, set currently at 40%, which is preventing this peak from being called.

After lowering the Min Heterozygote Imbalance filter to 20%, saving the changes, and reprocessing the data, we can see that the peak is now called. Furthermore, we can see that the smaller peak is actually 32% the height of the other recipient peak, as

Edi	t Marker				X
	Marker Parameters				
	Marker Name:	D2S441			
	Nucleotide Repeats (x):	4		•	
	Boundary:	208.2	То	246.0	
	Min Homozygote Inten	50	•		
	< = Inconclusive <=		200	•	
	Min Heterozygote Intensity:		50	•	
	< = Inconclusive <=		100	•	
	Max Heterozygote Imbalance:		60	%	
	Min Heterozygote Imbalance:		20	%	
	Apply Homo/Hetero Settings to All Markers				
	Stutter Filter: N	- x	9	%	
	N	- 2x	1	%	
	N	x + 1	1	%	
Apply Stutter Settings to All Markers					
		ОК		Can	cel

indicated by the 0.32 flag.

Note that the peak is flagged yellow, because 32% still puts the peak in the inconclusive range – defined here as being lower than 60%.

One final note about modifying panels: As mentioned in slides 2-4, The *Chimertyping panel* (prefix: Chimer) is a project specific panel derived from the original genotyping panel.

If you do choose to modify panel settings we recommend modifying the original genotyping panel, saving the changes, and then reprocessing your samples.

By modifying the genotyping panel directly, all derivative Chimertyping panels will reflect the changes.

However, if you instead modify the Chimertyping panel, you will only see improvements in that specific project.

(7) What is Deconvolution? "With deconvolution" and "Without deconvolution" are both options in the Chimerism analysis settings window.

Single-Donor Chimerism Settir	ngs		X			
Basic Settings Additional Settings						
_%CHM Type	-%CHM Type					
CHM Donor	C Area	C Area				
C %CHM Recipient	Height					
Analysis Type						
C With Deconvolution	O With Deconvolution					
Statistical Parameters						
Analysis Threshold						
🔲 Ignore Shared Allele Ir	Ignore Shared Allele Imbalance					
🔽 Ignore Locus						
Heterozygous Imbalance	<= 5	\$ %				
Confidence Level (MOE)	90%	۲ ک				
Error Threshold						
Locus Error	>=	10 🜩 %				
Coefficient of Variation	>=	10 🗢 %				
Measurement Error	>=	20 🔹 %				
	<u>ОК</u>	Cancel				

When "With Deconvolution" is selected, the program will use shared peaks (D1R) in its chimerism calculations.

When "Without Deconvolution" is selected, shared peaks will not be considered when calculating the chimerism percentage. This may lead to fewer informative markers.